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Abstract
We construct an explicit map that transforms static, generalized sine-Gordon
metrics to black hole type metrics. This, in particular, provides for a further
description of the Cadoni correspondence (which extends the Gegenberg–
Kunstatter correspondence) of soliton solutions and extremal black hole
solutions in 2D dilaton gravity.
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Mathematics Subject Classification: 83C57, 83C10, 83C15, 35Q53, 35Q51

1. Introduction

An interesting, intriguing connection between Euclidean N-soliton sine-Gordon solutions and
Lorentzian black hole solutions in Jackiw–Teitelboim dilaton gravity has been established by
Gegenberg and Kunstatter [4–6]. In case N = 1, a concrete transformation was constructed
that explicates this connection [9] (see also [10, 11]). The construction of such a transformation
in general seems to be a difficult problem as it involves, in particular, finding explicit solutions
of a system of dilaton field equations. Recently, these field equations have been solved for a
kink–antikink soliton (similar solutions were found in [5]), and thus an explicit transformation
has been also constructed in this case [2] that further implements the work in [4, 5].

We present a transformation � that takes any generalized static sine-Gordon type metric
to a black hole type metric. In particular, we present additional solutions of the dilaton field
equations (even in the non-static case) and a further description of the Cadoni correspondence
[3] between extremal black holes and generalized solitons—generalized sine-Gordon solutions
that do not give rise to constant curvature spacetimes, as in the Gegenberg–Kunstatter
discussion.

We dedicate this paper to the memory of Professor Melvyn Berger—friend, and
outstanding scholar in nonlinear phenomenon.
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2. Field equations for 2D dilaton gravity

Given a potential function V (r) and l > 0, we consider the general two-dimensional dilaton
gravity theory with action integral

I (τ, g) = 1

2G

∫
d2x

√−g

(
τR(g) +

V ◦ τ

l2

)
, (1)

for which the equations of motion are

R(g) +
V ′ ◦ τ

l2
= 0 (2)

∇µ∇ντ +
1

2l2
gµν(V ◦ τ) = 0 (3)

for the dilaton field τ(T , r) and metric g with scalar curvature R = R(g). For τ(T , r) = r
l
,

for example, and a constant C one has the well-known solution [1, 7]

ds2 = −
[
−J

( r

l

)
− C

]
dT 2 +

[
−J

( r

l

)
− C

]−1
dr2 (4)

for J ′(r) = V (r). Actually, C = −l2|∇τ |2 − J ◦ τ , and C
2l

can be interpreted as the energy of
the solution. For spherically symmetric gravity, for example, with V (r) = − γ√

r
, γ > 0, one

takes l = the Planck length lP .
For g given by

ds2 = cos2 u(x, t)

2
dx2 − sin2 u(x, t)

2
dt2 (5)

and for � = ∂2

∂x2 + ∂2

∂t2 ,

R = 2�u

sin u
(6)

by our sign convention for the scalar curvature, which is opposite the sign of R in [3, 5], and
the equations in (3) are

τxt +
1

2
tan

(u

2

)
utτx − 1

2
cot

(u

2

)
uxτt = 0

τxx +
1

2
tan

(u

2

)
uxτx +

1

2
cot

(u

2

)
utτt +

1

2l2
cos2

(u

2

)
(V ◦ τ) = 0

τtt − 1

2
tan

(u

2

)
uxτx − 1

2
cot

(u

2

)
utτt − 1

2l2
sin2

(u

2

)
(V ◦ τ) = 0.

(7)

By equations (2), (6) and by addition of the second and third equations in system (7) one
obtains

�u = − 1

2l2
(V ′ ◦ τ) sin u �τ = − 1

2l2
(V ◦ τ) cos u, (8)

the first equation being a generalized sine-Gordon equation. Following Cadoni [3], we shall
be interested in static field solutions u(x, t) = u(x), τ (x, t) = τ(x) in which case (8) reduces
to the system

u′′(x) = − 1

2l2
V ′(τ (x)) sin u(x) τ ′′(x) = − 1

2l2
V (τ(x)) cos u(x), (9)

which has first integrals

u′(x) = −A

l
V (τ(x)) τ ′(x) = 1

2lA
sin u(x), (10)



Explicit soliton–black hole correspondence for static configurations 4019

for any constant A �= 0. Note that by (10) one easily deduces that

d

dx

[
A2J (τ(x))) + sin2 u(x)

2

]
= 0 (11)

for J ′(x) = V (x), which gives the conservation law

A2J (τ(x)) + sin2 u(x)

2
= a constant, (12)

which we express as

sin2 u(x)

2
= −A2[J (τ(x)) + C] (13)

for a constant C. Using the second equation in system (10) and equation (13) one can also
deduce that

τ ′(x)2 = − 1

l2
[J (τ(x)) + C]{1 + A2[J (τ(x)) + C]}. (14)

Equations (13), (14), which we have deduced by a conservation law, compare with
equations (16), (17) in [3] where −K,−V and � are our J, V and τ , respectively.

3. The transformations Ψ

In the static case under consideration we write the metric in (5) as

ds2
sol = cos2 u(x)

2
dx2 − sin2 u(x)

2
dt2, (15)

where the subscript ‘sol’ suggests the word soliton—given the sine-Gordon equation in (8).
We look for an explicit map � = (ψ1, ψ2) and its inverse 	 = (θ1, θ2) such that under the
change of variables x = ψ1(T , r), t = ψ2(T , r), the metric ds2

sol in (15) is transformed to the
metric

ds2
bh = −

[
−J

( r

l

)
− C

]
dT 2 +

[
−J

( r

l

)
− C

]−1
dr2 (16)

in (4) for the C in equations (13), (14), where the subscript ‘bh’ suggests now some kind
of generic extremal black hole. Conversely, under the change of variables T = θ1(x, t),
r = θ2(x, t), ds2

bh −→ ds2
sol. It turns out that, in contrast to the more difficult non-static case,

� and 	 can be chosen to assume the following somewhat simple form.

Theorem 1. Let u(x) and τ(x) satisfy the system of first integrals (10). Then the following
maps provide transformations between the soliton metric (15) and the extremal black hole
metric (16):

ψ1(T , r) = τ
−1

( r

l

)
, ψ2(T , r) = T − θ0

A

θ1(x, t) = At + θ0, θ2(x, t) = lτ (x),

(17)

where τ
−1

is the inverse function of τ and θ0 is any constant.

Proof. Note first that, in general, for any change of variables x = ψ1(T , r), t = ψ2(T , r) the
metric ds2

sol in equation (15) goes to
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ds2 =
[(

∂ψ1

∂T

)2

cos2

(
u ◦ �

2

)
−

(
∂ψ2

∂T

)2

sin2

(
u ◦ �

2

)]
dT 2

+ 2

[
∂ψ1

∂T

∂ψ1

∂r
cos2

(
u ◦ �

2

)
− ∂ψ2

∂T

∂ψ2

∂r
sin2

(
u ◦ �

2

)]
dT dr

+

[(
∂ψ1

∂r

)2

cos2

(
u ◦ �

2

)
−

(
∂ψ2

∂r

)2

sin2

(
u ◦ �

2

)]
dr2,

for � = (ψ1, ψ2). If we wish to have ds2 = ds2
bh in equation (16), for C given in equation (13),

we must therefore have:(
∂ψ1

∂T

)2

cos2

(
u ◦ �

2

)
−

(
∂ψ2

∂T

)2

sin2

(
u ◦ �

2

)
a= J

( r

l

)
+ C

∂ψ1

∂T

∂ψ1

∂r
cos2

(
u ◦ �

2

)
− ∂ψ2

∂T

∂ψ2

∂r
sin2

(
u ◦ �

2

)
b= 0

(
∂ψ1

∂r

)2

cos2

(
u ◦ �

2

)
−

(
∂ψ2

∂r

)2

sin2

(
u ◦ �

2

)
c=

[
−J

( r

l

)
− C

]−1
.

Since we are focusing on the static case u(x, t) = u(x), τ (x, t) = τ(x) we have u◦� = u◦ψ1,

τ ◦� = τ ◦ψ1. Also, by equation (13), cos2
(

u◦ψ1

2

) = 1−sin2
(

u◦ψ1

2

) = 1+A2[J ◦τ ◦ψ1 +C],
which means that finding � reduces to solving the system(

∂ψ1

∂T

)2

{1 + A2[J ◦ τ ◦ ψ1 + C]} −
(

∂ψ2

∂T

)2

sin2

(
u ◦ ψ1

2

)
a′= J

( r

l

)
+ C

∂ψ1

∂T

∂ψ1

∂r
{1 + A2[J ◦ τ ◦ ψ1 + C]} − ∂ψ2

∂T

∂ψ2

∂r
sin2

(
u ◦ ψ1

2

)
b′= 0

(
∂ψ1

∂r

)2

{1 + A2[J ◦ τ ◦ ψ1 + C]} −
(

∂ψ2

∂r

)2

sin2

(
u ◦ ψ1

2

)
c′=

[
−J

( r

l

)
− C

]−1
.

Clearly equation b′ holds for ∂ψ1

∂T

d= 0,
∂ψ2

∂r

e= 0, in which case we write equation a′ as

−
(

∂ψ2

∂T

)2

sin2

(
u ◦ ψ1

2

)
= J

(
τ

(
τ−1

( r

l

)))
+ C = −1

A2

[
sin2

(
u
(
τ−1

(
r
l

))
2

)]

(by (13)), which suggests that we should try ∂ψ2

∂T
= 1

A
and ψ1(T , r) = τ−1

(
r
l

)
. Equation e

gives ψ2(T , r) = T
A

+ some constant. This shows how one arrives at the first transformation in
equation (17), though one needs to check, conversely, that both formulae in (17) indeed satisfy
equations a′, b′ and c′ (which is done directly). One can derive the 	 equation similarly, but
an easier route is to check indeed that 	 = (θ1, θ2) is the inverse of �. �

Since u(x) and τ(x) solve system (10), they also solve system (9). The verification that
the transformations in (17) indeed do work relies heavily on the equations (13), (14), which
as we have seen are implied by the equations in (10). The reader should not be misled by the
simple appearance of the expressions of � and 	 in the theorem; examples will demonstrate
the complexity of τ−1.

As a simple, but important example, choose V (x) = −2x, which provides for the Jackiw–
Teitelboim model. Choose

u(x) = ±4 arctan e
x−x0

l τ (x) = ±sech

(
x − x0

l

)
(18)



Explicit soliton–black hole correspondence for static configurations 4021

which solve system (10) for A = 1 (and which therefore solve system (9) and the sine-
Gordon equation u′′(x) = 1

l2 sin u(x)). Equation (13) then holds if and only if C = 0. By
equation (17), the transformations of variables

x = ψ1(T , r) = x0 + l log

[
l +

√
l2 − r2

±r

]
t = ψ2(T , r) = T ,

T = θ1(x, t) = t, r = θ2(x, t) = ±l sech

(
x − x0

l

) (19)

(where we choose θ0 = 0) take the soliton metric ds2
sol in (15) (for u(x) given in (18)) to

the extremal black hole metric ds2
bh = − r2

l2 dT 2 + l2

r2 dr2 and conversely ds2
bh −→ ds2

sol (via
	); here J (x) = −x2. These transformations � and its inverse 	 in (19) can be seen
as implementing the Cadoni correspondence for the present example. Note a minor typing
error in equation (31) of [3]: there one should have �

−1 = ± cosh(λ(x − x0)) (instead of
�

−1 = cosh(λ(x − x0)), as the minus sign is needed for the minus in (18)).
As pointed out in [3], a complete correspondence between 2D spacetime structures of

the dilaton gravity theory and solutions in the generalized sine-Gordon field theory requires a
consideration of metric (5) and of the metric

ds2 = cosh2 u(x, t)

2
dx2 − sinh2 u(x, t)

2
dt2 (20)

as well, for the sinh-Gordon model. Here for � = ∂2

∂x2 − ∂2

∂t2 , R = 2�u
sinh u

and thus equation (2)
is now

�u +
1

2l2
(V ′ ◦ τ) sinh u = 0 (21)

and the system in (3) becomes

τxt − 1

2
tanh

(u

2

)
utτx − 1

2
coth

(u

2

)
uxτt = 0

τxx − 1

2
tanh

(u

2

)
uxτx − 1

2
coth

(u

2

)
utτt +

1

2l2
cosh2

(u

2

)
(V ◦ τ) = 0

τtt − 1

2
tanh

(u

2

)
uxτx − 1

2
coth

(u

2

)
utτt − 1

2l2
sinh2

(u

2

)
(V ◦ τ) = 0.

(22)

From (21) and (22) one obtains in the static case the system

u′′(x) = − 1

2l2
V ′(τ (x)) sinh u(x) τ ′′(x) = − 1

2l2
V (τ(x)) cosh u(x) (23)

with first integrals

u′(x) = −A

l
V (τ(x)) τ ′(x) = 1

2Al
sinh u(x), (24)

that compares with system (10). Equations (13), (14) are replaced by

sinh2 u(x)

2
= −A2[J (τ(x)) + C]

τ ′(x)2 = − 1

l2
[J (τ(x)) + C] · {1 − A2[J (τ(x)) + C]}

(25)

for a suitable constant C. For this C, and for u(x), τ (x), that solve (24) (hence u(x), τ (x) also
solve equation (23)) one can check that for the metric ds2 in (20), ds2 −→ ds2

bh in (16), under
the change of variables (x, t) −→ �(T , r) = (ψ1(T , r), ψ2(T , r)), where
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ψ1(T , r) = τ
−1

( r

l

)
, ψ2(T , r) = T − θ0

A

θ1(x, t) = At + θ0, θ2(x, t) = lτ (x);
(26)

here 	 = (θ1, θ2) = �
−1

. Thus �, 	 here have the same form as the �, 	 in (17).

4. The sinh-Φ model and other examples

Another model is defined by the potential V (x) = − sinh(2x). System (10) is solved by

u(x) = π + 2 arctan

[√
2 sinh

(
x − x0

l

)]

τ(x) = arctanh

[
1√
2

sech

(
x − x0

l

)] (27)

for A = 1, and equation (13) holds for C = 1
2 . J (x) = − 1

2 cosh(2x). The extremal black
hole solution ds2

bh corresponding to solution (27), in the Cadoni correspondence, is given by
equation (16):

ds2
bh = −

[
1

2
cosh

(
2r

l

)
− 1

2

]
dT 2 +

[
1

2
cosh

(
2r

l

)
− 1

2

]−1

dr2

= −sinh2
( r

l

)
dT 2 + sinh−2

( r

l

)
dr2, (28)

as in equation (40) of [3]. A change of variables x = ψ1(T , r), t = ψ2(T , r) that takes
ds2

sol in (15) (for u(x) in (27)) directly to ds2
bh in (28) is given in (17), where we note that

τ
−1

(x) = x0 + larcsech(
√

2 tanh(x)) for τ(x) in (27):

ψ1(T , r) = x0 + l log


1 +

√
1 − 2 tanh2 r

l√
2 tanh r

l


 ψ2(T , r) = T , (29)

where again we take θ0 = 0.
Going back to the Jackiw–Teitelboim model with V (x) = −2x, one can obtain another

solution u(x), τ (x) of the field equations (9)—one of independent interest that involves the
Jacobi elliptic functions sn, cn and dn [8]. For this, given A �= 0 (as in system (10)) and a
constant E > 0, define

B = A2E

4l2
K = 1 +

2

A2E
α =

√
2K2 + 2K

√
K2 − 1 − 1

g(x) = (√
B

√√
K2 − 1 − K

)
x f (x) = sn(g(x), α)√√

K2 − 1 − K
.

(30)

Then one can show that the pair

u(x) = 4 arctan f (x)

τ(x) =
√

Ecn(g(x), α) dn(g(x), α)

1 + sn2(g(x),α)√
K2−1−K

(31)

solves system (10). Since sn(0, α) = 0 and cn(0, α) = dn(0, α) = 1, we see that u(0) = 0
and τ(0) = √

E. Also, J (x) = −x2, which means that in equation (13) we can conclude that
C = τ(0)2 = E, and that the solution in (16) corresponding to (31) is given by

ds2
bh = −

[
r2

l2
− E

]
dT 2 +

[
r2

l2
− E

]−1

dr2, (32)
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which is a black hole with positive mass E. In this case it is easier to compute the inverse
transformation 	 = �

−1
in (17) which is simply lτ for τ in (31).

The string-inspired gravity model, with V (x) = −γ, γ > 0, gives rise to the (non-soliton)
example

u(x) = Aγ

l
x + b, τ (x) = − 1

2A2γ
cos

(
Aγ

l
x + b

)
+ c (33)

that solves (10). J (x) = −γ x and the choice of x = − bl
Aγ

in (13) gives C = − 1
2A2 + γ c, by

which one obtains the solution (see (16))

ds2
bh = −

[
γ

l
r +

1

2A2
− γ c

]
dT 2 +

[
γ

l
r +

1

2A2
− γ c

]−1

dr2. (34)

�(T , r) in (17) assumes the form

ψ1(T , r) = l

Aγ

{
−b + arccos

[
2A2γ

(
c − r

l

)]}
ψ2(T , r) = T − θ0

A
. (35)

5. Remarks on non-static solutions

Non-static solutions of the field equations (7) (for string-inspired, spherically symmetric, and
Jackiw–Teitelboim (JT) gravity) are given in [2], which complement 2-soliton solutions found
in [5] for JT gravity. For example,

Theorem 2. Given m and v > 0 (which we regard as mass and velocity parameters) set
a2 = 1 + v2 and define

u(x, t) = 4 arctan

[
v sinh(amx)

a cos(vmt)

]
τ(x, t) = 4v2am [sin(vmt)] sinh(amx)

a2 cos2(vmt) + v2 sinh2(amx)
. (36)

Then this pair solves system (7) for V (x) = −x, l = 1√
2m

.

As shown in [2], a transformation � is also constructed that takes the metric in (5) to that
in (4), for an appropriate value of C. Another application for such transformations � is towards
the construction of exact solutions of field equations defined by the Laplacian �+

sol of the
metric (5). In the static case at hand, one can prove the following somewhat remarkable
commutivity property, which means that 	 and � are transformations of solution spaces:

Theorem 3. Let �−
sol denote the Laplacian of the metric in equation (20), let �bh denote the

Laplacian of the metric in (4) and let D±
τ denote the domains

D±
τ = {(x, t) ∈ R

2| ± τ ′(x) > 0}. (37)

Then for a function f (T , r) and the transformation 	 in (17) (which we have observed is the
same as that in (26)), one has

�+
sol(f ◦ 	) = (�bhf ) ◦ 	 on D+

τ

�−
sol(f ◦ 	) = (�bhf ) ◦ 	 on D−

τ .
(38)

In particular, 	 and � are isometries.

Details of this commutation property are found in [11], in the JT case, where some solutions
of the equation �solφ = µφ are also presented.
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